BEST: International Journal of Management, Information Technology and Engineering (BEST: IJMITE) ISSN(Print):2348-0513; ISSN(Online): 2454-471X; Vol. 3, Issue 9, Sep 2015, 37-52 © BEST Journals

INTERPRETATION OF $^{16}O(D,\alpha)^{14}N$ -REACTION'S MECHANISM AT E $_D$ = 1.876 - 40 MEV S. E. ABDEL-KARIEM 1 & M. H. KHALIL 2

Department of Physics, Faculty of Science, Ain-Shams University, Abbassia, Cairo, Egypt

ABSTRACT

The experimental differential cross-sections data for the lower four ¹⁴N-states, measured at different twenty deuteron's incident energies ranged from 1.876 to 40 MeV, are used to interpret the mechanism of the $^{16}O(d, \alpha)$ -reaction. The zero-range Distorted Wave Born Approximation (DWBA)-Theory with the help of the Cohen-Kurath's spectroscopic factor amplitudes for two-nucleon transfer are used to analyze the experimental data. The experimental angular distributions for the lower two ¹⁴N-states G. S. (1⁺; 0) and 3.948 MeV (1⁺; 0), at lower incident energies (E _d from 1.876 to 18.1 MeV), are incident energy dependent. While those for the four ¹⁴N-states G. S. (1⁺; 0); 3.948 (1⁺; 0); 7.029 (2⁺; 0) and 11.05 MeV (3 $^+$; 0), at higher incident energies E d \geq 18.8 MeV, are incident energy independent and they show satisfactory fits with the corresponding theoretical predictions for both the two methods of analysis. On other hand, the experimental forward integrated cross-sections [σ_{exp} (0°-90°)], for the same lower four ¹⁴N-states at E _d = 40 MeV, show excellent fits with the bare Cohen-Kurath's SU(3) spectroscopic factors (S) and also with the corresponding theoretical forward integrated cross-sections [σ_{DW-4} (0°-90°) for both semi-microscopic and microscopic]. These satisfactory fits serve as tests for the accuracy of the target and final-nucleus wave functions used in the calculation of spectroscopic-factors. In addition, the experimental forward integrated cross-sections for the lower three ¹⁴N-states G. S.; 3.948 and 7.029 MeV, decreases exponentially with increased incident energy and provide good fits with the corresponding theoretical forward integrated cross-section curves. Such fits support the fact that the reaction mechanism, at the higher incident energies (E $_{\rm d} \ge 18.8$ MeV), is primarily direct. The Cohen-Kurath's theoretical excitation-energies for the lower four ¹⁴N-states G. S.; 3.948; 7.029 and 11.05 MeV, can predict and are in excellent agreement with the corresponding experimental values. The accurate prediction for the lower ¹⁴N-states is a success of the Cohen-Kurath's wave functions to describe the 1p-shell nuclei and for their model of calculation.

KEYWORDS: Spectroscopic-Factor Amplitudes, Transferred Pair Nucleons, Semi-Microscopic and Microscopi DWBA-Theoretical Analysis